Nanoscience Instruments, Inc.


Analogous to how an STM works, a sharp tip is raster-scanned over a surface using a feedback loop to adjust parameters needed to image a surface. Unlike STM, the AFM does not need a conducting sample. Instead of using the quantum mechanical effect of tunneling, atomic forces are used to map the tip-sample interaction. 

Often referred to as scanning probe microscopy (SPM), there are AFM techniques for almost any measurable force interaction - van der Waals, electrical, magnetic, thermal. For some of the more specialized techniques, modified tips and software adjustments are needed.

In addition to Angstrom-level positioning and feedback loop control, there are 2 components typically included in AFM: Deflection and Force Measurement.

AFM Probe Deflection

Today, most AFMs use a laser beam deflection system where a laser is reflected from the back of the reflective AFM lever and onto a position-sensitive detector. AFM tips and cantilevers are microfabricated from Si or Si3N4. Typical tip radius is from a few to 10s of nm.





Measuring Forces

Because the AFM relies on the forces between the tip and sample, these forces impact AFM imaging. The force is not measured directly, but calculated by measuring the deflection of the lever, knowing the stiffness of the cantilever.

Hooke’s law gives

F = -kz

where F is the force, k is the stiffness of the lever, and z is the distance the lever is bent.