Close this search box.

Why Measure Impedance on Every Channel in a Battery Cycler?

Photo of multiple battery cells wired in series used as a representation of a battery cycler with electrical impedance spectroscopy testing
Share this Article:

Electrochemical Measurements

Electrochemical measurements are essential for understanding the characteristics of battery cells, which enables the development of batteries with longer cycle lives and more efficient charge and discharge mechanisms. The electrochemical tests used for analyzing battery capacity, performance, and lifetime are typically carried out using a battery cycler with multiple measurement channels to boost throughput. Battery cycler technologies use repetitions of charge and discharge cycles under controlled conditions to provide information about how the cells behave over time. Battery cycling protocols vary based on the desired output data, but experiments can include open circuit potential (OCP), cyclic voltammetry (CV), chronopotentiometry (CP), and additional, more complex methods such as Electrochemical Impedance Spectroscopy (EIS).

Impedance measurements in battery development

Impedance measurements add an additional layer of quantifying device performance. This non-destructive technique allows for investigation into the degradation mechanisms of batteries while minimizing downtime. It is expected that all batteries will undergo a reduction in performance and an increase in measured impedance as they are cycled over time, which makes impedance measurements an important tool for monitoring battery health. As the battery degrades, understanding the various degradation pathways related to each internal component of the battery empowers scientists with the data they need to optimize the materials. The impedance-based analysis of internal reactions provides information about the anode, cathode, and separator materials, as well as diffusion and different states of charge.

Predictive modeling for battery performance and efficiency

By fitting the impedance data to an equivalent circuit model, the results can be plotted as a function of the state of charge and/or cycle number. The model can be used to simulate the behavior of the battery under different conditions and in different systems to predict its performance and efficiency. This information is critical for identifying sources of resistance in the battery and guiding the process of optimizing the battery’s design.

Factors to consider while choosing a Battery cycler

When choosing a battery cycler for your lab, it is important to consider:

  • The type of battery device being measured
  • The available measurement modes
  • The number of channels needed
  • The software features

Ivium Technologies Battery Cyclers

Ivium Technologies designs modular battery cyclers that offer full experimental flexibility with integrated EIS on every channel. By factory-integrating the necessary hardware for simultaneous impedance measurements, the signal path length is shortened, ensuring minimal noise degradation or other effects at high frequency that cables can introduce. These battery-testing systems are designed by electrochemists, for electrochemists and run on the easy-to-use, and feature rich CycliScan tool in the IviumSoft software, which helps users build automated battery cycling protocols, designate specific datasets for later analysis, and choose each mode, parameter, limit, and impedance step in the experiment to assist with Design of Experiments (DOE). For data analysis, the Ivilab program is a powerful tool for analyzing charge/discharge and impedance data. It allows you to visualize data in various ways and extract meaningful information and provides a better understanding of how to improve the battery being tested.

Electrochemical Impedance Spectroscopy (EIS) Example Data
Cyclic Voltammetry
Example Data

To learn more about our battery cyclers and the benefits of simultaneous impedance measurements on every channel, watch our webinar: Empowering Battery Testing with Ivium Technologies – Nanoscience Instruments

Share this Article:
Featured News
Contact Nanoscience
Request More info

Want to learn more? Talk to a scientist:

Related News & Posts

More from Nanoscience

Why EDS Matters: The Role of Energy Dispersive X-ray Spectroscopy in Materials Science 

Energy Dispersive X-ray Spectroscopy (EDS) is an analytical technique used for elemental analysis and chemical characterizati…

July 17, 2024

Pristine Cross-Section Polishing in Material Analysis 

In material science, cross-section polishing is a critical method to enable the detailed examination of a sample material’s m…

July 10, 2024

Advancing Wound Care with Electrospinning

Wound care solutions are essential in medicine to protect injuries from infection, manage exudate, and create an optimal heal…

June 26, 2024

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.