Scanning Electron Microscopy

A scanning electron microscope (SEM) scans a focused electron beam over a surface to create an image. The electrons in the beam interact with the sample, producing various signals that can be used to obtain information about the surface topography and composition.


Electrospinning is a voltage-driven process governed by the electrohydrodynamic phenomena where fibers and particles are made from a polymer solution.

Atomic Force Microscopy

The atomic force microscope (AFM) was developed to overcome a basic drawback with STM – it can only image conducting or semiconducting surfaces.

Scanning Tunneling Microscopy

The scanning tunneling microscope (STM) works by scanning a very sharp metal wire tip over a surface. By bringing the tip very close to the surface, and by applying an electrical voltage to the tip or sample, we can image the surface at an extremely small scale – down to resolving individual atoms.

Optical Profilometry

Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three-dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. This can be done using a physical probe or by using light.

Ion Milling

Ion milling is the process of removing the top amorphous layer on a material to reveal the pristine sample surface for high-resolution imaging and post-processing.


Tensiometry is the measure of surface tension, contact angles, density and other properties in order to obtain information on the interactions between gas, liquid and solid phases.

Quartz Crystal Microbalance (QCM)

Quartz Crystal Microbalance (QCM) is an extremely sensitive mass balance that measures nanogram to microgram level changes in mass per unit area. The heart of the technology is a quartz disc. Quartz is a piezoelectric material that can be made to oscillate at a defined frequency by applying an appropriate voltage usually via metal electrodes. Oscillation frequency can be monitored in real time to obtain useful information about molecular interactions or reactions taking place at the electrode surface, such as film growth, oxidation, corrosion/decay, etc.

Langmuir Films

Langmuir Films are thin organic films of a thickness of just one molecule and are the source of high expectations. As useful components in many practical and commercial applications such as sensors, detectors, displays and electronic circuit components. With both the possibility to synthesize custom organic molecules and sophisticated thin film deposition technology it is possible to create electrically, optically and biologically active components on a nanometer scale.

Mechanical Testing

Mechanical testing is used to determine properties such as hardness, modulus, fracture toughness or yield strength.


Nanoindentation enables researchers to measure mechanical properties such as modulus and hardness of materials in different shapes, sizes and scales.


Cathodoluminescence (CL) is used to characterize optical properties at the nanoscale. Cathodoluminescence techniques analyze the resulting photons that are emitted in the ultraviolet to near-infrared region of the electromagnetic spectrum.